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SOME MEASURE THEORETIC RESULTS 
IN EFFECTIVE DESCRIPTIVE SET THEORY 

BY 

JACQUES STERN 

ABSTRACT 

Assuming projective determinacy when it is needed, we prove some structure 
theorems in the measure theory and the category theory of the analytical 
hierarchy. 

The first studies of measure theory in effective descriptive set theory were 

done by Spector [ 12] Sacks [ 10] and Tanaka [ 14]; similarly, problems related to 

category have been studied by Feferman, Hinman [3], and Thomason [15]. 

Recent work on the consequences of the axiom of projective determinacy have 

made it possible to carry the theory from the first level of the analytical 

hierarchy up to an arbitrary level. This has been done by Kechris, whose 

results have appeared in a nice and comprehensive article on the subject [5]. 

The present work must be viewed as a supplement to Kechris' article. In the 

first part, we prove a theorem (due independently to Kechris and the author) 

asserting the existence of largest 1-I~+, and E~, sets of zero measure (resp. of 

the first category), and, without using determinacy, we study the largest 1-1'1 and 

E~ sets of zero measure.* In the second part, we discuss the structure of "large" 

II~n+, and E~n sets. Especially, we give some additional information on the 

approximation of these sets. Another result of interest which we prove is the 

I1~.+, ' II2.§ A ', existence, for any (or E2~) set A, of a largest ' (or EL) set A C_ A' 

with the same measure. 

We wish to thank Profs. D. A. Martin and R. M. Solovay for valuable 

conversations, which aroused our interest in descriptive set theory, and Dr. A. 

S. Kechris for a stimulating correspondence. 

0. Definitions and notations 

In the sequel, we will follow the common notations of modern descriptive set 

theory. We make a short review of them and recall the basic tools and results 

t The results in this part have been announced in [13]. 
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we will use. For more details the reader is referred to [5] and [6]. to is the set of 

nonnegative integers and ~ = ' to  is the set of mappings from to into to; 

elements of "to are called "reals".  "to is endowed with the usual product 

topology: a system of basic open sets for this topology is the set of open sets of 

the form g where g = ( a : 6 ( n ) =  s) and s is a finite sequence of integers of 

length n. Actually, this topology is induced by a metric and therefore it makes 

sense to develop the theory of Baire category. If /~0 is the usual product 

measure on ~ 2, a measure/~ on ~to is defined by # (X) =/.Lo(X N "2) for any 

Borel set X. 

We are interested into properties of subsets of to ~ x ~ "  where k and m are 

integers; we call these subsets "pointsets".  A set of pointsets is a"pointc lass" .  

We will consider especially the analytical pointclasses E'. and I1',. 

DEFINITION 1 (Moschovakis). Let  F be a pointclass, A a pointset in F; a 

I,-norm on A is a mapping ~b from A onto an ordinal, for which there exist two 

relations in I,, R and S, such that if/3 is an element of A 

(a E A ~: ck(a ) <~ ch([3 )) *-~ R (a, [3 ) ~ ,  -IS(a,[3);  

we say R and S define ~b on A. 

The relation on A ~<, such that a ~< ,/3 ,~,~(a)~< ~b(/3) is a prewellordering 

(i.e. a well-founded, connected, preordering) 

DEFINITION 2 (Moschovakis). Let  F be a pointclass, A a pointset in F; a 

F-scale on A is a sequence of I" norms (,#.),e,  on A, uniformly defined by 

relations in I,, R(n ,  a, [3), S(n ,  a, [3) and such t h a t - - i f  (a~),~, is a sequence in 

A with 

l i m a , = a  and d~k(at)=Xk 

for large enough i, then 

a E A and ~bk (a) <~ Ak. 

Projective Determinacy is the hypothesis that every projective set is deter- 

mined. For information about determinacy we refer the reader to the survey 

article [2]. To read the present paper, it is enough to know the following 

consequences of the axiom of projective determinacy: 
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THEOREM 1. Assume  projective determinacy, then: 

(i) (Mycielski, Swierzkowski [9]). Every projective set is Lebesgue 

measurable (resp. has the Baire property); 

(ii) (Martin [7], Moschovakis [1]) Every El, (resp l-I~,+0 set has a E~. (resp. 

l-I~+0- norm; 

(iii) (Moschovakis [8]). Every E~ (resp, II~,,+~) set has a ~,~,~ (resp. II~,+,)- 

scale ; 

(iv) (Kechris [4]). Assume  ~b(a,/3) is E~,, (resp. l-I,~,+~) then the predicate 

" r  ~< p,({/3 :~b(a,/3)})" is E~, (resp. IIl~+~) in r and or. (r is a rational number).  

The predicate "{/3 :~b(a,/3)} is not meager" is E',, (resp. II~,+~) in a. 

The prewellordering technique will be essentially used here via the following 

well-known lemma. 

LEMMA 1. Let <~ be a prewellordering on a set o f  reals A ;  i[ any initial 

segment o[ <<- is of  zero measure (resp. of  the first category), then , - -e i ther  <- 

is a non measurable subset o[ ~ 2 (resp ~ has not the Baire p r o p e r t y ) - - o r  A is 

of  zero measure (resp. of  the first category). 

1. The structure of small sets 

In this section, we state a theorem on small sets and discuss the situation for 

Ill and E 1 small sets. 

THEOREM 2. Assume  projective determinacy, then there exist Ill,+1 and E~,. 

largest sets o[ zero measure (resp. of  the first category). 

This is due independently to Kechris [5] and we give only a sketch of the 
proof for Y.~ 2. sets in the measure case. 

Let A ( n , a )  be universal for E' ~ 2, sets, let 4) a E~, norm on A, -< the 
corresponding prewellordering. We let M and M, be defined by the following: 

a ~ M ~ 3 n  (A(n,a)&l~({13:(n ,[3)<~,(n ,a)})=O) 

a ~M.,--, A(n,a)&#({~ ;(n, fl) ~ , ( n , a ) }  = O. 

M contains all E,~n zero measure sets and M is clearly E,~n ; now, if tx ( M ) ~  0 

then for some integer n, # (Mn) ~ 0; but M, is a preweUordered set such that 

any initial segment is of zero measure; furthermore this prewellordering is E,'n 

as a subset of ~2,  therefore it is measurable; hence we get a contradiction by 
Lemma 1. 
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A. The Illt case 

We will investigate the Iltt case with a technique very close to forcing on 

admissible sets. To state our definitions we need the notion of code for  a Borel 

set. Roughly speaking a code for  a Borel set B is a real containing information 

on the way B is built f rom the open intervals with rational endpoints  (for a 

precise definition see [1 I]). 

DEFINITION 3. A real ot is weakly random (resp. weakly Cohen generic) over  

L~ if a does not belong to any zero measure  (resp. first category) Borel set with 

a code in L~. 

The reader  should be aware of the fact  that this is not the classical definition. 

Especially for  8 = tot, our definition does not imply that Lto,[a]  is admissible. 

REMARK. From the existence of an "hyperar i thmet ic  code"  for  Atj sets it 

follows that the AI sets are the Borel sets with a code in Lto,. 

THEOREM 3. There is a largest Ill set of  zero measure (resp. of  the first 

category ). 

The largest l-I', zero measure set is the set of  a ' s  such that either to7 ~ to, or a 

is not weakly random over Lto,. 

The largest l-I t, set of  the first category is the set of  ~ ' s  such that either to ~ ~ tot 

or a is not weakly Cohen generic over Lto,. 

PROOF.* Sacks [10] has proved that {a: toT~ to,} is Ill of zero measure.  The 

set of c~ 's which are not weakly random over  Lto, is also l-I', of zero measure.  

To finish the proof,  let us first recall the definition of a tree: a tree on to x to is 

a set of finite sequences of  e lements  of to • to closed under subsequences.  For  

any element  s of T, say s = ((too, no ) , " ' , (m~ ,m) )  it is posible to define the 

sequence of "second  coordinates"  z r ( s ) =  (no, ." ,  nk). If  a is real, T ( a )  is the 

set of  e lements  s of  T such that zr(s) is an initial segment  of  a (i.e. zr(s) = c/(]) 

for  some ]). T ( a )  is a tree on to. 

Now let A be a l-ltt set; it is well known that there is a recursive tree T on 

to x to such that a ~ A ~ T ( a )  is well founded. Assume there is an element  a 

in A such that to7 = tot; then T ( a )  has length ~ < to,. But then, the set o f / 3 ' s  

such that T(/3) is a tree of length ~< ~ is a Art set which contains a as an 

element;  therefore  if A is of measure  zero, a is not weakly L,,  random. 

B. The E~ case 

It is not surprising that the problem of the existence of a largest E~ zero 

t The initial proof we gave in [13] used forcing. 
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measure set is connected with random reals (see [11] for  a definition); the 

following theorem analyzes the notion of random real f rom the point of view of 

descriptive set theory. 

THEOREM 4. 1) The [ollowing two statements are equivalent: 

(i) a is random over L. 

(ii) ,5 ''~ = ~ and a is weakly random over Ls;. 

2) Similarly, the following are equivalent: 

(i) oe is Cohen generic over L. 

(ii) ,52 ''a = 3; and a is weakly Cohen generic over L~.  

PROOF. We will restrict ourselves to the first case. 

Assume first ~ is not random over  L :  then the following is true: 

33,,/3 (y is a well ordering &/3 E Llyl  &/3 codes a Borel set of zero measure 

B&t~ E B) .  

It is not difficult to see that this statement is E~(ot); therefore,  by the basis 

theorem 3' can be chosen to be a A~(a) real; hence either 8~ '~ r $~ or the code/3 

for B is in Ls~ that is to say a is not weakly random over  Ls~. 

Conversely,  assume a is random over  L. It is clear that a is weakly random 

over  La,. Suppose 8~ 'a > 8~. Pick a real r in Lal.- such that r codes a well 

ordering of type 8~. Assume r has the following definitions: 

(m,n  ) E r ,~4 ' [a ,m ,n  ] 

(m ,n )a t  r ~-*~b[a,m,n] 

where # and 4, are E, ~ relations. By Shoenfield absoluteness lemma, it is easy to 

see that 4' and ~k also define r in L [a ]. Now we use forcing with Borel sets of 

positive measure: we let p be a forcing condition (i.e. a Borel set of positive 

measure with code in L )  which forces 

Vm Vn (re, n) E ~ ~4, (o t ,  m ,n  ) & 

Vm Vn (m,n  ) at ~ ,~ ,O(a ,m ,n ) ,  

wh'ere ot is a name for the generic real, and ~ a name for r. 

Let  v ~ be a Boolean extension of the universe with 

~ is countableD = 1. 
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For any random real/3 in p, that is for  a set of positive measure [in V ~ ] r is 

A~(/3). So in V ~ we have 

#({/3 : r E A~(/3)}) > 0. 

But this contradicts a result of Kechris  ([5] theorem 3.1.1) which ensures that if 

/z({/3 : r  E A~(/3)})>0 then r is A~ (the reader will check that the proof of 

Kechris '  theorem for the A, ~ case can be carried through in V ~ and uses no 

determinacy).  We now turn to the largest E~ zero measure set. 

THEOREM 5)  Assume one of the following equivalent properties : 

(i) Almost  all reals are random over L (resp. all reals except a set of  the 

first category are Cohen generic over L ). 

(ii) Every E1 set is Lebesgue measurable (resp. has the Baire property). 

(iii) {a :~5~"~ 8~} is of zero measure (resp. of the first category); 

then, 

(i) There is a maximal zero measure E~ set (resp. a maximal E ~, set of  the 

first category). 

(ii) This set is the set of  non random reals over L (resp. non Cohen generic 

reals over L ). 

PROOF (for the measure case). Let  M be the set of reals which are not 

random over  L ; by the hypothesis/x (M) -- O; fur thermore M is E~. Now if ~ is 

a E '  relation and contains a random real a then by Shoenfieid absoluteness 

lemma ~b(a) holds in L [a] ;  therefore  there is a Borel set p with a code in L 

such that: p II-tb(a) where t~ is a name for a random real). But then, for  any 

random real in p that is for  a set of /3's of positive measure, ~b(/3) holds in 

L[/3], therefore  in the universe, so {/3: ~b(/3)} is not of zero measure. 

We do not know if the converse of this theorem is true; nevertheless,  we 

know the following result which is of some interest; 

THEOREM 6. Assume there is a maximal 1-I~ set of  zero measure (resp. o[ the 

first category), then almost all reals are random over L (resp. all reals except a 

set of the first category are Cohen generic over L ). 

REMARK. The same result holds with [I2.+~ instead of l-I~. 

PROOF. Let  ~< L be the canonical well ordering of the reals in L and let 

I(~, /3)  be the statement {(a), ; n E to} is the set of elements which are strictly 

smaller than /3 in the canonical well ordering. It is well known that ~< L and 

, Par ts  of  this theorem were certainly known to Solovay. 
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I(a, [3) are uniformly ~'~. Assume there is a maximal 1131 set of zero measure A. 

We wish to prove that the set of reals which are random over  L is included in 

A. If this is not true, one can define the first code/3 (in ~< L) for  a Borel set B of 

zero measure not included in A. We claim A U B  is 17~ and derive a 

contradiction. Actually, we have: 

a ~ A  U B ' ~ - ~ a E A  or V / 3 V v [ I ( v , [ 3 ) & t t ( ~ ) = O &  

a E / 3 & V n ( a ~ : ( 3 , ) ,  or / x ( ( 3 , ) , ) ~ 0 ) : : > V n ( / x ( V ) n ) g 0  or (V).C_A)] ,  

where "/3" is the Borel set coded by [3 and a ~ "/3" means: "[3 codes a Borel set 

B a n d a ~ B " .  So A U B  is II~. 

REMARK. By an argument of the same kind one can prove that if V = L 

there is no maximal zero measure E~ set. 

REMARK. Provided ZF is consistent,  it is consistent to assume 

- V = L( r )  where r is a real 
- N~ = N~ 

- There is a maximal E ~ 2 set of zero measure. 

To prove this result consider the generic extension of L obtained by forcing 

with closed sets of measure /> 1/2. It is known that this set of conditions has the 

c.c.c, and that almost all reals in L[G] are random. 

2. The  structure of large sets 

In this section we refine some of the techniques used in [5] to analyze the 

structure of large sets. This enables us to provide a uniform treatment for  the 

measure case and the category case, and to prove a conjecture of Kechris. 

Throughout  this section, we assume projective determinacy.  

A. The kernel of a prewellordered large set 

Very often,  we will restrict ourselves to the measure case; the reader will 

supply the analogous definitions and results in the category case. 

DEFINITION 4. Let  A be a set of positive measure in a pointclass F, 4~ a 

F-norm on A, ~<, the corresponding prewellordering. The kernel of A with 

respect  to ~b, A ~ is defined by the following property:  

a E A ~ ' ~ ( { B : [ 3  <~,a&a ~<,/3}) > 0 & a  E A .  
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In other words the kernel.is the set of elements which appear at some level in 

the preweliordering with " m a n y "  other elements. 

A - A ~ is defined by: 

a C A  - A ~--~/z({/3:/3 <~,a&a <-,/3})=O&a C A ,  

I therefore  it is not difficult to see for F = Xl. or 172.§ both A ~ and A - A ~ are 

in F. 
The following result shows that we don' t  lose very much by discarding the set 

A - A ~ .  

LEMMA 2. Assume F is El. or IT,.+1, then, A - A ~  is of zero measure. 

PROOF. The restriction of ~<, to A - A , ~  is a prewellordering of A - A  

and is a projective subset of ~ x ~ (therefore mesurable). So by Lemma 1, if 

A - A  ~ is not of zero measure it has an initial segment of positive measure. 

Then, there exists an element of A - A ,~, minimal with respect to <~ , ,  such that 

if A ~ is {a :a  <~,fl&a E A  - A ~ }  we have g.(A~) >0 .  Now if we let A~ be 

{a : a <~ ,(3&r ~ ,a&a C A - A ~}, A~ is a prewellordered set a n d - -  by the 

definition of / 3 - - a n y  initial segment is of zero measure. So /z(AB)= 0 by 

Lemma 1. Finally, / x ( A ~ - A o ) > 0  but A ~ - A ,  is { a : a  <<-,3&/3 
~< , a & a  C A}; thus we get /3 C A~; contradiction. 

For  the rest of the section we assume F is El. or II~.+1; we let A, 4' be given; we 

write a - ,/3 for  (a ~< ,/3 &/3 -< , a ) .  

LEMMA 3. Any real a in A ~ is equivalent (mod - , )  to a A real, (where A is 

A~.+, if F is H~.+,, A~. if F is E~.). 

PRoos tN Tr~ MsAstm~ CASE. Let  m = t~ ({/3 :/3 -< . a  }) 

m'  = ~ ({/3 :/3 ~< , a  & a r ,/3 }). 

Pick a rational number r such that m < r < m '  then 

{y :y ~ A  & ~({/3 :/3 < , y  & y~ , /3} )  < r & ~({~ :g  ~<,y}) > r} 

is precisely {y : y - a }, it is in F and of positive measure therefore it contains a 

A-real. 
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PROOF FOR THE CATEGORY CASE. Let  s be a finite sequence of integers such 

that g - {/3 :/3 - ,or } is meager. We can apply the same argument as before  to 

the set {3, :y  E A & g - {/3 :/3 ~< ,3,} is meager &g - {/3:/3 ~< ,Y&Y~ ,/3} is not 

meager}, which is {y : y ~ ,a  }. 

COROLLARY. Any equivalence class ( m o d - 4 ' )  included in A ~  is in h. 

We now make a systematic use of the device of labelling the equivalence 

classes of A ~ introduced in the proof  of the preceding lemma. 

1. The measure case 

We define ,~o(r,a) by: 

r is a positive rational number &a ~ A&/~ ({/3 :/3 ~< , a  }) > r&/x ({/3 :/3 <~ ,a& 

;to is in F and the set of rationals such that there is some o~ with )to(r, a )  is the 

set of r such that r </~ (A). 

Now if (r.) ,~l is a fixed recursive enumeration of the positive rational numbers 

we let 

A (n, a ) ,~, Ao(r., a ). 

2. The category case 

In that case, we define )to(s,a) by: 

s is a finite sequence of integers &a E A&g-{ /3 : /3  ~< ,a}  is meager &g - 

{/3:/3 ~<,o~&a~,[3} is not meager & A - g  is not meager. 

It is clear that )to is in F and that the set of s such that Eta )to (s, a )  is the set of 

s such that: 

A - g  is not meager 

g - A  is meager. 

If (s,)n~. is a recursive enumeration of finite sequences of integers, we let 

X ( n , a ) ~  Xo(S,,a). 

DEFINITION 5. A set A has A measure if Ma = {r: r is a rational number & 

r < /x  (A)} is a A-real. 

A set A has h-category if Ca = {s:s  is a finite sequence of integers and 

g n A is not meager} is a A-real. 

If A has A-category, then {s: g - A  is meager & A - g  is not meager} is a 

A-real. Call this last set C~, we have: 



106 J. STERN Israel J. Math., 

s ~ C~,<-->u c_ g ---> s' ~ C A ) & 3 s ' ( s '  ~ C,,&g' n g = 0) .  

THEOREM 7. Assume A ~ is the kernel o[ A with respect to 4~ ; let 0 be the 

length of the restriction o[ ~b to A ~; the following are equivalent: 

(i) A has A-measure. 

(ii) A ~ is a A set. 

(iii) 0 < 8 (where 8 is 8~,.+~ in case F = H,~,+,, 8~. in case F = El,.). Also, the 

following is true anyway : 0 <<. 8. 

Similarly [or category. 

PROOF. (ii)--> (i) is an ea sy  c o n s e q u e n c e  of  T h e o r e m  1 (iv). W e  now p r o v e  

(i)--> (ii); if A is of  A-measu re  the set  mA of  in tegers  n such  that  r. < / z ( A )  is a 

A-real;  but  A ~ has  the  fo l lowing definit ions:  

ot ~A~<-->3n EmA 3/3 EA(h(n , /3 )&a - , / 3 )  

aatA~<-->Vn EmA 3/3 E A ( A ( n , / 3 ) &  --](a ~ ~,/3)) 

the re fo re ,  A ~  is a A-set.  

In o rder  to c o m p u t e  0, we  in t roduce  the fo l lowing p rewel lo rder ing  ,~ on mA : 

n ~m,~->3ot C A  3/3 E A ( A ( n , a ) & h ( m , / 3 ) & o t  <<.,/3). 

Actua l ly  < is a F-prewel lo rder ing ;  to p r o v e  this, a s s u m e  m E mA then,  fo r  the 

m e a s u r e  case :  

n ~ m "~,3a E AOt ( m , a )  &/z ({/3 :/3 <~ ,~})  > / r . ) .  

F o r  the ca t ego ry  case  one  should wri te  instead:  

n ~ m ~ ::lol E A(A (m, a ) & L - {/3 :/3 ~< , a  } is not  meage r ) .  

N o w ,  if mA is a A-real,  ~ is a A-prewel lorder ing  and  the re fo re  has  length 

smal le r  than  8, which  p r o v e s  ( i ) -*  (iii). 

T o  d raw the conc lus ion  (iii)-->(i) as well  as the ex t r a  a s s u m p t i o n  0 ~< 8, it 

r ema ins  to p r o v e  the fo l lowing l emma:  

LEMMA 4. The length of a F-norm on a F subset of  to, x, which is not A is 

exactly 8. 

PROOF. Recal l  that  F is E '  H' 2. or  z..l. Le t  k a fixed e l emen t  in x. I f  < is the 

g iven F - n o r m  on x and if 0 < 8 is the length of  ' ~ ,  let 3' be  a subse t  of  to • to 
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coding a A-well ordering of length 0. Define I (k ,8)  to be: 8 is an order 

preserving map from an initial segment of 3' onto (m : m .~ k). It is not difficult 

to see that I(k, 8) is in F as well as 7 I ( k , 8 ) .  Now we let ~b(n,k) to be 

k ~x&V') ,[I(k ,  8) ~ 6(n) ~ k&k ~ 6(n)] or equivalently k E x& 38 

[ I ( k , 6 ) & 6 ( n ) ~ k & k  ~ 8(n)]  according as F is l-I,~,+, or E,~.. For  any n in the 

domain of y, there is a k such that k E x & 4)(n, k), so by the selection theorem 

there is an f:  co---)(o in A such that Vn ~ d o m ( 3 , ) ( f ( n ) E x & c k ( n , f ( n ) ) .  Then 

k ~xe :~3n  E d o m ( y ) ( k  ~ f ( n ) ) ,  so x is in A. 

The following result is an example of an application of the technique of kernels. 

THEOREM 8. Assume projective determinacy, then; 

1) Forany [I1,,+, (resp. Y~,,) set A, there is a maximal I-IL+, (resp. YL) set A ', 

A C A ' ,  with the same measure. 

2) Forany I1~,+1 (resp. ~, ,)  set A, there is a maximal IF,,+j (resp. EJ,,) setA ', 

A ' C A '  and A ' - A is meager. 

PROOF. Let  M be the largest II' 2,+~ set of zero measure. For  a given II' z . §  set 

A put A ' = A  U M. We claim any II;.+, set B with ~ ( B - A ) - - 0  is in fact  

included in A' .  Let  ~ be a norm on B;  B - B~ is IIL§ and of zero measure so 

it is included in M. Therefore  if the claim is not true, there is an element/3 in 

' - = A2,+, measure; now B :  n o t i n A , c o n s i d e r { a ; a  ,/3} B ' ; B ' i s  ' of positive 

B '  - A '  is Z~,+, of zero measure so if C is the complement  of B '  - A '  and 0 is a 
I norm on C we have B '  - A '  r3 C :  = O. But C :  is a A2,+~ set of measure 1, so 

B ' - A '  is included in a A;,+, set of zero measure, therefore  in M;  contradic- 

tion. 

The proof is the same for the :E~, Case. 

B. The kernel with respect to a scale 

Let  to = {tOo," ",tol,'" ".} a F-scale on a fixed r set A with positive measure. 

We assume that tO has the following property.  

If tok(a) = 0k (o~') then t~(k + 1) = 6 ' (k  + 1) and to~(a) = to~(a') for  any i ~<k. 

The standard procedure to go f rom a F-scale (~.).~,~ to a scale with this 

property is to consider the lexicographic well ordering on 2(n + l)-uples: 

(4'0((~), a(0),  "" ,( t ' , (~) ,  a(n))  

and to define 6 accordingly. We leave the details to the reader. 

What has been done in the preceding paragraph for  A and (k, can be done 

(uniformly) for  A and each to,. Thus we can get a relation A ( i , n , a )  

corresponding to ,~ (n, a )  for  each i; 
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From now on we assume A 

7A(i,n,a)~-~n~. mA 
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has A measure;  then we notice that: 

or 3/3 E A ( 7 ( / 3  - , ,a )&A(i ,n ,  fl)) 

therefore  A (i, n, a )  is in fact  in A. If  we let A (i, a )  to be the smallest integer n if 

it exists such that A (i, n, a )  holds, 0 otherwise then A is a A-function. We now 

define a tree T on to x to. 

(no, ni,'",nk : po,'",pk)E T o  

::la E A(6(k  + 1) = (no, . . . ,  n~)&Vj 0 ~< j ~< k --~pj = A(j ,a)  # 0). 

Another  definition of T is 

3 a  (t~(k + 1)=(no,'",nk)&Vj O<~j <~k--~pj = A ( j , a ) #  0). 

Now we claim if p(T)= {a:3/3  (fl, a )  is a branch through T} then 

[~  K K --  A , , -  A ,  C p ( T ) C A .  
i=l 

Let  a in A ~ ;  for  any n pick a A-real a ,  such ~b, (am) = PROOF OF CLAIM. 

~, ( a )  then 

~ ( n  + 1) = ~ . ( n  + 1) 

~ / , ( a . ) = ~ i ( a )  for O<~i<~n 

therefore  A ( i , a , ) = A ( i , a )  for O<~i<-n; finally if / 3 ( i ) = A ( i , a ) ,  (a, fl) is a 

branch through T. 

Now,  let 7 in p [T],  (7,8) be a branch through T;  it follows f rom the definition 

of T that for  any n there is a A-real a .  such that: 

{ ~ ( n  + 1) = 6 . ( n  + 1) 

g(n + 1) = (A(0, a ,  ), . . ' ,  A(n, a .  )). 

Recall definition 2; (a . ) .~o  is a sequence of reals such that lira._| a .  = 3'. For  

any k />  n, 6 - (ak)  = 6 .  (a . ) .  Therefore ,  it follows that 3, is in A. 
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T is a real (up to any coding device); from the above definitions it follows 

that if F is II,~.+t T is a A,~,§ Thus we have proved: 

THEOREM 9. Assume projective determinacy ; let A be a Ilz~,+~ set with A,~,+I 

measure; then there is a A~,+~ tree T o n  to x to such that p i T ]  is a subset of  A 

with the same measure; similarly [or category. 

This last result reduces the problem of approximating II;,§ sets to the easier 

one of approximating E~(a ) sets. As an example, we get a proof of the following 

theorem: 

THEOREM l0 t Assume projective determinacy. Let  A be a II~,,§ set with 

positive A~,+~-measure, then, there is a strongly Az~,+~ For subset of  A with the 

same measure. 

Recall an For set A is strongly A~ iff there is a A~ real T such that: 

- V n ( T ) .  i s a t r e e .  

- a  E A  o 3 n  ( V m 6 ~ ( m ) E ( T ) , ) .  

PROOF. Apply the relativized version of the analogous theorem for E~ sets 

([5], th. 4.3.4.). 
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